গণিতের জ্যামিতি -(সরলরেখা - ৩ )

ওয়েব স্কুল বিডি : সুপ্রিয় শিক্ষার্থী বন্ধুরা, শুভেচ্ছা নিয়ো। আজ গণিতের জ্যামিতি -সরলরেখা ধারণা নিয়ে আলোচনা করা হল।

সরলরেখার প্রয়োজনীয় সূত্রাবলী :
1. ax+by+c=0 সরলরেখার ঢাল, m = `\frac{-a}b `
2.
3.
4. x অক্ষের সমীকরণ, y = 0
5. y অক্ষের সমীকরণ, x = 0
6. x অক্ষের সমান্তরাল সরলরেখার সমীকরণ, y = b
7. y অক্ষের সমান্তরাল সরলরেখার সমীকরণ, x = a
8. y অক্ষ থেকে নিদিষ্ট অংশ c ছেদ করে এবং x অক্ষের সাথে ধনাত্মক কোণ θ উৎপন্ন করে এরূপ সরলরেখার সমীকরণ, y = mx+c. এখানে, m = সরলরেখার ঢাল = tanθ , c = 0 হলে সরলরেখাটি মূলবিন্দুগামী হয় এবং সমীকরণটি দাড়ায়, y = mx
9.`(x_1, y_1) ` বিন্দুগামী ও m ঢাল বিশিষ্ট সরলরেখার সমীকরণ `y-y_1 = m(x-x_1) `
10.`(x_1, y_1) ` ও `(x_2, y_2) ` বিন্দুগামী রেখার সমীকরণ, ` \frac{x-x_1}{x_{1-}x_2}=\frac{y-y_1}{y_{1-}y_2} `
11.মূলবিন্দু (0,0) এবং `(x_1, y_1) ` বিন্দুর সংযোগকারী সরলরেখার সমীকরণ,` \frac{x-x_1}{x_1 -x_2}=\frac{y-y_1}{y_1-y_2} `
( 12.x অক্ষ থেকে নির্দিষ্ট অংশ a এবং y অক্ষ থেকে নির্দিষ্ট অংশ b ছেদ করে এরূপ সরলরেখার সমীকরণ, `\frac\xa + \frac\yb ` = 1
(i)সরলরেখাটি x অক্ষরেখাকে (a,0) এবং y অক্ষরেখাকে (0,b) বিন্দুতে ছেদ করে

13.মূলবিন্দু থেকে যে সরলরেখার উপর অঙ্কিত লম্ব x অক্ষের ধনাত্মক দিকের সাথে θ কোণ উৎপন্ন করে এবং যার উপর মূলবিন্দু থেকে অঙ্কিত লম্বের দৈর্ঘ্য p তার সমীকরণ, x cosθ + ysinθ = p

14.দুইটি সরলরেখার সমীকরণ সমাধান করলে তাদের ছেদবিন্দুর স্থানাঙ্ক পাওয়া যায় ।
15.a1x+b1y+c1 = 0 এবং a2x+b2y+c2 = 0 সরলরেখাদ্বয়ের ছেদবিন্দুগামী সরলরেখার সমীকরণ,
a1x+b1y+c1+k(a2x+b2y+c2) = 0
k-এর বিভিন্ন মানের জন্য সমীকরণটি বিভিন্ন সরলরেখা প্রকাশ করে যার প্রত্যেকেই উক্ত ছেদ বিন্দুগামী ।
16. (x1, y1) ও (x2,y2) বিন্দুদ্বয় ax+by+c = 0 রেখার একই পার্শ্বে অবস্থিত হবে যদি a1x+b1y+c এবং a2x+b2y+c রাশিদ্বয় একই চিহ্নবিশিষ্ট হয় ।
17. (x1, y1) ও (x2,y2) বিন্দুদ্বয় ax+by+c = 0 রেখার বিপরীত পার্শ্বে অবস্থিত হবে যদি a1x+b1y+c এবং a2x+b2y+c রাশিদ্বয় বিপরীত চিহ্ন বিশিষ্ট হয় ।
18. দুইটি সরলরেখার ঢাল যথাক্রমে m1 ও m2 হলে তারা পরস্পর লম্ব হবে যদি m1×m2 = -1 হয় এবং তারা পরস্পর সমান্তরাল হবে যদি m1= m2 হয় ।
19. a1x+b1y+c1 = 0 এবং a2x+b2y+c2 = 0 রেখাদ্বয় পরস্পর লম্ব হবে যদি a1a2+b1b2 = 0 হয় এবং তারা পরস্পর সমান্তরাল হবে যদি (a1/b1) = (a2/b2) হয় ।
20. দুইটি সরলরেখার ঢাল যথাক্রমে m1 ও m2 এবং তাদের মধ্যবর্তী/অন্তর্ভুক্ত কোণ θ হলে,
tanθ = ±
tanθ এর ধনাত্মক মান অন্তর্ভুক্ত সূক্ষ্মকোণ এবং ঋণাত্মক মান অন্তর্ভুক্ত স্থূল কোণ নির্দেশ করে ।
21. a1x+b1y+c1 = 0 এবং a2x+b2y+c2 = 0 এবং রেখাদ্বয়ের অন্তর্ভুক্ত কোণ θ হলে,

tanθ = ±
tanθ এর ধনাত্মক মান অন্তর্ভুক্ত সূক্ষ্মকোণ এবং ঋণাত্মক মান অন্তর্ভুক্ত স্থূল কোণ নির্দেশ করে ।
22.ax+by+c1 = 0 রেখার সমান্তরাল কোন রেখার সমীকরণ হবে, ax+by+c2 = 0 অর্থাৎ,শুধু ধ্রুবক পদটির পরিবর্তন হবে ।
23.(x1,y1) বিন্দুগামী এবং ax+by+c = 0 রেখার সমান্তরাল রেখার সমীকরণ, a(x-x1)+b(y-y1) = 0
24.ax+by+c1 = 0রেখার লম্ব কোন রেখার সমীকরণ হবে, bx-ay+c2 = 0 অর্থাৎ,x ও y এর সহগদ্বয় পরস্পর স্থান পরিবর্তন করবে,এদের একটির চিহ্ন পরিবর্তিত হবে এবং ধ্রুবক পদটি পরিবর্তিত হবে ।
25. (x1,y1) বিন্দুগামী এবং ax+by+c = 0 রেখার লম্ব রেখার সমীকরণ, b(x-x1) – a(y-y1) = 0
26. a1x+b1y+c1 = 0; a2x+b2y+c2 = 0 এবং a3x+b3y+c3 = 0  রেখাত্রয় সমবিন্দু হবে যদি,

  = 0 হয় ।

 27. উক্ত রেখাত্রয় দ্বারা গঠিত ত্রিভুজ ক্ষেত্রের ক্ষেত্রফল = <
যেখানে, D = এবং C1, C2, C3 যথাক্রমে c1, c2, c3 এর সহগুণক ।

28.ax+by+c = 0 সরলরেখা থেকে (x1,y1) বিন্দুর লম্ব দূরত্ব,
d =
29.দুইটি সমান্তরাল রেখা ax+by+c1 = 0 ও ax+by+c2 = 0 এর মধ্যবর্তী দূরত্ব, d =
30. a1x+b1y+c1 = 0 এবং a2x+b2y+c2 = 0 রেখাদ্বয়ের অন্তর্ভুক্ত কোণের সমদ্বিখণ্ডক সরলরেখাদ্বয়ের সমীকরণ,
  1. a1a2+b1b2 > 0 হলে + চিহ্নধারী সমীকরণটি স্থূলকোণের এবং - চিহ্নধারী সমীকরণটি সূক্ষ্মকোণের সমদ্বিখণ্ডক নির্দেশ করে ।
  2. a1a2+b1b2 < 0 হলে + চিহ্নধারী সমীকরণটি সূক্ষ্মকোণের এবং – চিহ্নধারী সমীকরণটি স্থূলকোণের সমদ্বিখণ্ডক নির্দেশ করে ।


Type – 1 : কোনো রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয় -

উদাহরণ- ০১ : (3, 7) ও (6, 10) বিন্দুদ্বয়ের সংযোগ রেখাকে যে বিন্দুটি দুটি 2 : 1 অনুপাতে অন্তর্বিভক্ত করে তার স্থানাঙ্ক নির্ণয় কর।
সমাধান : মনেকরি, অন্তর্বিভক্তকারী বিন্দুটি দুটির স্থানাঙ্ক, `(\alpha,\beta) `.
∴ `\alpha = \frac{m_1x_2+m_2x_1}{m_1+m_2}`
= ` \frac{2.6+1.3}{2+1} `
= ` \frac{12+3}{3} `
= ` \frac{15}{3} `
= 5
এবং `\beta = \frac{m_1y_2+m_2y_1}{m_1+m_2}\ `
= ` \frac{2.10+1.7}{2+1} `
= ` \frac{20+7}{3} `
= ` \frac{27}{3} `
= 9
∴নির্ণেয় অন্তর্বিভক্তকারী বিন্দুর স্থানাংক, (5, 9). উত্তর :


অনুরুপ প্রশ্ন :
উদাহরণ- ০২ : (3, 7) ও (6, 10) বিন্দুদ্বয়ের সংযোগ রেখাকে যে বিন্দুটি দুটি 2 : 1 অনুপাতে বহির্বিভক্ত করে তার স্থানাঙ্ক নির্ণয় কর।
উদাহরণ- ০৩ : A(3, 4)এবং B(5,9) বিন্দুদ্বয়ের সংযোগ রেখাংশকে যে বিন্দুুটি 2 : 3 অনুপাতে বহির্বিভক্ত করে, তার স্থানাঙ্ক নির্ণয় কর।
উদাহরণ- ০৪ : (7, 5) ও (-2, -1) বিন্দু দুইটির সংযোগ রেখাংশের সমত্রিখন্ডক বিন্দুর স্থানাঙ্ক নির্ণয় কর।
উদাহরণ- ০৫ : A(-2, 4) এবং B(4, -5) বিন্দুদ্বয়ের সংযোগ রেখাংশ AB কে C পর্যন্ত এমনভাবে বর্ধিত করা হল যেন AB =3BC হয়। C বিন্দুর স্থানাঙ্ক নির্ণয় কর।
উদাহরণ- ০৬ : A, B, C ও D এর স্থানাঙ্ক যথাক্রমে (1, -8), (-3, 4), (0, 7)ও (3, 16). AB কে CD রেখাংশটি যে অনুপতে ভাগ করে তা বের কর।

গাণিতিক সমস্যার উদাহরণ ও সমাধান :


1. (-1,3) ও (4,-2) বিন্দুগামী সরলরেখার অক্ষদ্বয়ের মধ্যবর্তী খণ্ডিত অংশটুকুর দৈর্ঘ্য কত ?
সমাধানঃ
উক্ত বিন্দুগামী সরলরেখার সমীকরণ,
⇒ x+1 = -y+3
⇒ x+y = 2
⇒ x/2 + y/2 = 0    [x/a + y/b = 1 সরলরেখা x অক্ষকে (a,0) ও y অক্ষকে (0,b) বিন্দুতে ছেদ করে]
∴ সরলরেখাটি x অক্ষকে (2,0) এবং y অক্ষকে (0,2) বিন্দুতে ছেদ করে ।
∴ অক্ষদ্বয়ের মধ্যবর্তী খণ্ডিত অংশ = = √8
= 2√2  [ans.]
2. এমন একটি সরলরেখার সমীকরণ নির্ণয় কর যা (3,2) বিন্দু দিয়ে অতিক্রম করে এবং x ও y অক্ষকে যথাক্রমে A ও B বিন্দুতে ছেদ করে। যেন OA-OB = 2 হয়, যখন O মূলবিন্দু।

সমাধানঃ
ধরি, সরলরেখাটির সমীকরণ, x/a + y/b = সরলরেখাটি (3,2) বিন্দুগামী । ⇒ 3b+2a = ab (i) ⇒ a-b = 2
⇒ a = 2+b
∴ (i) ⇒ 3b+2(2+b) = (2+b)b
⇒ b2-3ab-4 = 0
⇒ b = 4, -1
যখন, b = 4 তখন, a = 6
∴ x/6 + y/4 = 1
⇒ 2x+3y = 12   [ans.]
যখন, b = -1 তখন, a = 1
∴ x/1 + y/-1 = 1
⇒ x-y  = 1    [ans.]

3. ax+by = c এবং x cosα + y sinα = p একই সরলরেখা নির্দেশ করলে p এর মান a,b তে প্রকাশ কর ।
সমাধানঃ
4. একটি সরলরেখা অক্ষ দুইটি থেকে সমমানের যোগবোধক অংশ ছেদ করে । মূলবিন্দু থেকে তার উপর অঙ্কিত লম্বের দৈর্ঘ্য 4 একক । তার সমীকরণ বের কর ।

সমাধানঃ
সরলরেখাটি অক্ষ দুইটি থেকে সমমানের যোগবোধক a অংশ ছেদ করলে,
সরলরেখার সমীকরণ, x/a + y/a = 1
⇒ x+y = a ...(i)
আবার, মূলবিন্দু থেকে সরলরেখাটির উপর অঙ্কিত লম্ব যদি x অক্ষের ধনাত্মক দিকের সাথে α কোণ উৎপন্ন করে তবে,
সরলরেখাটির সমীকরণ, x cosα + y sinα = 4
∵ (i) ও (ii) একই সরলরেখা নির্দেশ করে
∴ 1/cosα = 1/sinα = a/4
⇒ ⇒ a2 = 16×2
⇒ a = 4√2       [ans.]

5. k এর সব মানের জন্য একগুচ্ছ সরলরেখা (3+2k)x+5ky-3 = 0 একটি নির্দিষ্ট বিন্দুগামী। বিন্দুটির স্থানাংক নির্ণয় কর।

সমাধানঃ
এখানে, (3+2k)x+5ky-3 = 0
⇒ 3x+2kx+5ky-3 = 0
⇒ 3x-3+k(2x+5y) = 0 ...(i)
(i) সমীকরণটি 3x-3=0 ⇒ x-1=0 ⇒ x=1 এবং 2x+5y=0 সরলরেখাদ্বয়ের ছেদবিন্দুগামী সকল রেখার জন্য সত্য ।
x=1 এবং 2x+5y=0 সমাধান করে পাই,
x=1, y=-2/5
∴ (1,-2/5) নির্ণেয় বিন্দু । [ans.]

6. (-1,2) বিন্দু দিয়ে যায় এবং 3x-y+7=0 রেখার সাথে 45° কোণ উৎপন্ন করে এরূপ রেখাদ্বয়ের সমীকরণ নির্ণয় কর ।

সমাধানঃ

এখানে, 3x-y+7=0 রেখার ঢাল = -(3/-1) = 3        [ax+by+c=0 রেখার ঢাল = -(a/b) ]
উক্ত রেখার সাথে 45° কোণ উৎপন্ন করে এরূপ সরলরেখার ঢাল m হলে,
tan 45° = ±(3-m)/(1+3m)
⇒ 1 = ± (3-m)/(1+3m)   

     
[দুইটি সরলরেখার ঢাল m1 ও m2 এবং তাদের মধ্যবর্তী কোণ θ হলে, tanθ = ±]
‘+’ নিয়ে পাই, 3-m = 1+3m       ⇒ 4m = 2       ⇒ m = ½
‘-’ নিয়ে পাই, -3+m = 1+3m      ⇒ 2m = -4      ⇒ m = -2
∴ (-1,2) বিন্দুগামী m = ½ ঢালবিশিষ্ট সরলরেখার সমীকরণ,
y-2 = ½ (x+1)        [(x1,y1) বিন্দুগামী m ঢালবিশিষ্ট সরলরেখার সমীকরণ, y-y1 = m(x-x1)]
⇒ 2y-4 = x+1
⇒ x-2y+5 = 0     [ans.]
আবার, (-1,2) বিন্দুগামী m = -2 ঢালবিশিষ্ট সরলরেখার সমীকরণ,
y-2 = -2(x+1)
⇒ y-2 = -2x-2
⇒ 2x+y = 0     [ans.]

7. y অক্ষের সমান্তরাল এবং 2x-3y+4 = 0 ও 3x+3y-5 = 0 রেখা দুইটির ছেদবিন্দু দিয়ে যায় এরূপ সরলরেখার সমীকরণ নির্ণয় কর ।

সমাধানঃ
2x-3y+4 = 0
3x+3y-5 = 0
সমাধান করে, x = 1/5, y = 22/15           [use calculator to solve equations to save time]
∵ সরলরেখাটি y অক্ষের সমান্তরাল
∴ সরলরেখার সমীকরণ, x = 1/5
⇒ 5x-1 = 0     [ans.]

8. এমন একটি সরলরেখার সমীকরণ নির্ণয় কর যা 2x+3y+4 = 0 এবং 3x+4y-5 = 0 রেখা দুইটির ছেদবিন্দু দিয়ে যায় এবং 6x-7y+8 = 0 রেখার উপর লম্ব।

সমাধানঃ
2x+3y+4 = 0 ও 3x+4y-5 = 0 এর ছেদবিন্দুর স্থানাংক ≡ (-33,22) [use calculator]
∴ (-33,22) বিন্দুগামী 6x-7y+8 = 0 রেখার লম্ব রেখার সমীকরণ, -7(x+31)-6(y-22) = 0
[(x1,y1) বিন্দুগামী ax+by+c = 0 রেখার লম্ব রেখার সমীকরণ, b(x-x1)-a(y-y1)=0]
⇒ -7x-217-6y+132 = 0
⇒ 7x+6y-85 = 0          [ans.]

9. (8,5), (-4,3) বিন্দু দুইটির সংযোজক রেখার লম্ব দ্বিখণ্ডকের সমীকরণ নির্ণয় কর ।

সমাধানঃ
উক্ত বিন্দুদ্বয়ের সংযোজক সরলরেখার ঢাল = (5-3)/(8+4) = 1/6 [ঢাল = ]
∴ উক্ত সরলরেখার লম্ব সরলরেখার ঢাল = - [দুটি সরলরেখার ঢালের গুণফল -1 হলে তারা পরস্পর লম্ব]
(8,5),(-4,3) বিন্দুদ্বয়ের সংযোজক সরলরেখার মধ্যবিন্দু ≡ ≡ (2,4)
[(x1,y1) ও (x2,y2) বিন্দুদ্বয়ের সংযোজক সরলরেখার মধ্যবিন্দু ≡ ()]
∴ (2,4) বিন্দুগামী -6 ঢালবিশিষ্ট সরলরেখার সমীকরণ,
y-4 = -6(x-2 [(x1,y1) বিন্দুগামী m ঢালবিশিষ্ট সরলরেখার সমীকরণ, y-y1 = m(x-x1)]
⇒ y-4 = -6x+12
⇒ 6x-y+26 = 0 [ans.]

10. এমন একটি সরলরেখার সমীকরণ নির্ণয় কর যার অক্ষ দুইটির মধ্যবর্তী খণ্ডিত অংশ (-4,3) বিন্দুতে 5:3 অনুপাতে অন্তর্বিভক্ত হয়।

সমাধানঃ
ধরি, সরলরেখাটির সমীকরণ, x/a+y/b = 1
অর্থাৎ সরলরেখাটি x অক্ষকে (a,0) ও y অক্ষকে (0,b) বিন্দুতে ছেদ করে।
∴ বিন্দুদ্বয়ের সংযোজক রেখা যে বিন্দুতে 5:3 অনুপাতে অন্তর্বিভক্ত হয় তার,
স্থানাংক ≡ () ≡ (3a/8, 5b/8)
[(x1,y1) ও (x2,y2) বিন্দুদ্বয়ের সংযোজক সরলরেখা যে বিন্দুতে m1:m2 অনুপাতে অন্তর্বিভক্ত হয়, তার স্থানাংক ≡ () ]
কিন্তু, 3a/8 = -4
⇒ a = -4(8/3)
⇒ a = -32/3
এবং, 5b/8 = 3
⇒ b = 3(8/5)
⇒ b = 24/3
∴ সরলরেখাটির সমীকরণ, = 1
⇒ -3x/32 + 5y/24 = 1
⇒ 9x-20y = -96
⇒ 9x-20y+96 = 0      [ans.]

11. 12x-5y = 7 রেখার 2 একক দূরবর্তী সমান্তরাল রেখার সমীকরণ নির্ণয় কর ।

সমাধানঃ 12x-5y-7 = 0 রেখার সমান্তরাল কোন রেখার সমীকরণ, 12x-5y+c=0
প্রশ্নমতে, = 2
[ax+by+c1=0 ও ax+by+c2=0 সমান্তরাল রেখার মধ্যবর্তী দূরত্ব = ⇒ ± (c+7) = 26
হয়, c+7 = 26 অথবা, -c-7 = 26
⇒ c = 19 ⇒ c =-33
∴ নির্ণেয় রেখাংশ, 12x-5y+19 = 0  এবং
12x-5y-33 = 0

12. x-3y+2=0; x-6y+3=0; x+ay=0 রেখা তিনটি সমবিন্দু হলে a এর মান নির্ণয় কর ।

সমাধানঃ
∵ রেখাত্রয় সমবিন্দু

⇒ 9-(a+6) = 0
∴ a = 3 [ans.]

13. 4x+3y = c এবং 12x-5y = 2(c+3) রেখা দুইটি মূলবিন্দু থেকে সমদূরবর্তী । c এর ধনাত্মক মান নির্ণয় কর ।

সমাধানঃ
এখানে, ⇒ c/5 = 2(c+3)/13
⇒ 13c = 10c+30
⇒ c = 10          [ans.]


Web School BD

বাংলাদেশের প্রথম অনলাইন ভিত্তিক ট্রেনিং সেন্টার "Web School BD". ওয়েব স্কুল বিডি : https://www.webschool.com.bd

Post a Comment

আপনার কোন কিছু জানার থাকলে কমেন্টস বক্স এ লিখতে পারেন। আমরা যথাযত চেস্টা করব আপনার সঠিক উত্তর দিতে। ভালো লাগলে ধন্যবাদ দিতে ভুলবেন না। শিক্ষার্থীরা নোট ,সাজেশান্স ও নতুন নতুন ভিডিও সবার আগে পেতে আমাদের Web School BD চ্যানেলটি সাবস্ক্রাইব SUBSCRIBE করতে পারো।
- শুভকামনায় ওয়েব স্কুল বিডি

Previous Post Next Post