এইচ এস সি উচ্চতর গণিত - বৃত্ত(১)

ওয়েব স্কুল বিডি : সুপ্রিয় শিক্ষার্থী বন্ধুরা, শুভেচ্ছা নিয়ো। আজ তোমাদের এইচ এস সি উচ্চতর গণিতের জ্যামিতি- বৃত্ত (Circle) নিয়ে আলোচনা করা হলো

অনলাইন এক্সামের বিভাগসমূহ:
জে.এস.সি
এস.এস.সি
এইচ.এস.সি
সকল শ্রেণির সৃজনশীল প্রশ্ন (খুব শীঘ্রই আসছে)
বিশ্ববিদ্যালয় ভর্তি (খুব শীঘ্রই আসছে)
বিসিএস প্রিলি টেষ্ট

এইচ এস সি উচ্চতর গণিতের জ্যামিতি- বৃত্ত (Circle)

১. যে বৃত্তের কেন্দ্র মূলবিন্দু (0,0) এবং ব্যাসার্ধ r তার সমীকরণ।
x2+y2 = ry2

২. যে বৃত্তের কেন্দ্র (h,k) এবং ব্যাসার্ধ r তার সমীকরণ। (x-h)2+(y-k)2 = r2
h=0 হলে কেন্দ্র y অক্ষের উপর অবস্থিত। বৃত্তের সমীকরণ, x2+(y-k)2=k2
k=0 হলে কেন্দ্র x অক্ষের উপর অবস্থিত। বৃত্তের সমীকরণ, (x-h)2+y2=h2

৩. বৃত্তের সাধারণ সমীকরণ, x2+y2+2gx+2fy+c=0
যেখানে, বৃত্তের কেন্দ্র ≡ (-g,-f) এবং ব্যাসার্ধ = √(g2+f2-c)
g = 0 হলে কেন্দ্র y অক্ষের উপর অবস্থিত
f = 0 হলে কেন্দ্র x অক্ষের উপর অবস্থিত
c = 0 হলে বৃত্তটি মূলবিন্দুগামী

৪. কোন বৃত্ত x অক্ষকে ছেদ করলে x অক্ষ থেকে কর্তিত অংশ = 2√(g2-c)
বৃ্ত্তটি x অক্ষকে স্পর্শ করলে g2=c

কোন বৃত্ত y অক্ষকে ছেদ করলে y অক্ষ থেকে কর্তিত অংশ = 2√(f2-c)
বৃত্তটি y অক্ষকে স্পর্শ করলে f2=c

৫. কোন বৃত্ত x অক্ষকে স্পর্শ করলে তার ব্যাসার্ধ হবে কেন্দ্রের কোটির মান এবং সমীকরণ হবে, (x-h)2+(y-k)2 = k2

৬. কোন বৃত্ত y অক্ষকে স্পর্শ করলে তার ব্যাসার্ধ হবে কেন্দ্রের ভুজের মান এবং সমীকরণ হবে, (x-h)2+(y-k)2 = h2

৭, (x1,y1) ও (x2,y2) বিন্দু দুইটির সংযোগ সরলরেখাকে ব্যাস ধরে অঙ্কিত বৃত্তের সমীকরণ, (x-x1)(x-x­2)+(y-y1)(y-y2) = 0

৮. x2+y2+2gx+2fy+c=0 বৃত্তের এককেন্দ্রিক অন্য কোন বৃত্তের সমীকরণ হবে, x2+y2+2gx+2fy+c1=0

৯. x2+y2+2gx+2fy+c=0 বৃত্ত এবং ax+by+c1 সরলরেখার ছেদবিন্দুগামী বৃত্তের সমীকরণ, x2+y2+2gx+2fy+c+k(ax+by+c1)=0

১০. দুইটি বৃত্ত পরস্পরকে বহিঃস্থভাবে স্পর্শ করলে,
তাদের ব্যাসার্ধদ্বয়ের যোগফল = কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব।

এক্ষেত্রে সাধারণ স্পর্শক তিনটি।
১১. দুইটি বৃত্ত পরস্পরকে অন্তঃস্থভাবে স্পর্শ করলে,
তাদের ব্যাসার্ধদ্বয়ের অন্তরফল = কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব

এক্ষেত্রে সাধারণ স্পর্শক একটি।

১২. দুইটি বৃত্ত পরস্পরকে ছেদ করবে যদি কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব ব্যাসার্ধদ্বয়ের যোগফলের থেকে ছোট হয়।
এক্ষেত্রে সাধারণ স্পর্শক দুইটি।

১৩. দুইটি বৃত্ত পরস্পরকে ছেদ বা স্পর্শ কোনটিই করবে না যদি কেন্দ্রদ্বয়ের মধ্যবর্তী দূরত্ব ব্যাসার্ধদ্বয়ের যোগফলের চেয়ে বড় হয়।

এক্ষেত্রে সাধারণ স্পর্শক চারটি।

১৪. x2+y2+2gx+2fy+c=0 এবং x2+y2+2g1x+2f1y+c1=0 বৃত্তের ছেদবিন্দুগামী বৃত্তের সমীকরণ, x2+y2+2gx+2fy+c+k(x2+y2+2g1x+2f1y+c1)=0

১৫. বহিঃস্থ কোন বিন্দু থেকে কোন বৃত্তের ওপর দুইটি স্পর্শক অঙ্কন করা যায়।

১৬. y=mx+c সরলরেখাটি x2+y2 = r2 বৃত্তকে স্পর্শ করবে যদি,
c = ±r√(1+m2) হয়

১৭. x2+y2=r2 বৃত্তের উপরিস্থিত (x1,y1) বিন্দুতে অঙ্কিত স্পর্শকের সমীকরণ,
xx1+yy1=r2

১৮. x2+y2+2gx+2fy+c = 0 বৃত্তের (x1,y1) বিন্দুতে অঙ্কিত স্পর্শকের সমীকরণ,
xx1+yy1+g(x+x1)+f(y+y2)+c = 0

১৯. বহিঃস্থ কোন বিন্দু (x1,y1) থেকে x2+y2 = r2 বৃত্তের উপর অঙ্কিত স্পর্শকদ্বয়ের সমীকরণ, (x2+y2-r2)(x12+y12-r2)=(xx1+yy1-r2)2

২০. বহিঃস্থ বিন্দু (x1,y1) থেকে x2+y2+2gx+2fy+c=0 বৃত্তের উপর অঙ্কিত স্পর্শকদ্বয়ের সমীকরণ,
(x2+y2+2gx+2fy+c)(x12+y12+2gx1+2fy1+c) = {xx1+yy1+g(x+x1)+f(y+y1)+c}

২১. বহিঃস্থ বিন্দু (x1, y1) থেকে x2+y2=a2 বৃত্তের উপর অঙ্কিত স্পর্শকের দৈর্ঘ্য, = √(x2+y2-r2)
উক্ত বিন্দু থেকে x2+y2+2gx+2fy+c=0 বৃত্তের উপর অঙ্কিত স্পর্শকের দৈর্ঘ্য, = √(x12+y12+2gx1+2fy1+c)

২২. x2+y2 = r2 বৃত্তের (x1,y1) বিন্দুতে অভিলম্বের সমীকরণ,
x1y-y1x=0
বৃত্তের অভিলম্ব এর কেন্দ্রগামী।

২৩. x2+y2+2gx+2fy+c=0 বৃত্তের (x1,y1) বিন্দুতে অভিলম্বের সমীকরণ,
(x1+g)y-(y1+f)x+fx1-gy1=0

২৪. x2+y2+2g1x+2f1y+c1 = 0 এবং x2+y2+2g2x+2f2y+c2 = 0 বৃত্তদ্বয়ের সাধারণ জন্য এর সমীকরণ, (x2+y2+2g1x+2f1y+c1) – (x2+y2+2g2x+2f2y+c2)=0


Muhammad Abdullah Al Mamun

I am Abdullah Al Mamun. Lecturer of Tejgaon College dept. of Mathematics. Have completed M.S in Mathematics from Chittagong University.

Post a Comment

আপনার কোন কিছু জানার থাকলে কমেন্টস বক্স এ লিখতে পারেন। আমরা যথাযত চেস্টা করব আপনার সঠিক উত্তর দিতে। ভালো লাগলে ধন্যবাদ দিতে ভুলবেন না। শিক্ষার্থীরা নোট ,সাজেশান্স ও নতুন নতুন ভিডিও সবার আগে পেতে আমাদের Web School BD চ্যানেলটি সাবস্ক্রাইব SUBSCRIBE করতে পারো।
- শুভকামনায় ওয়েব স্কুল বিডি

Previous Post Next Post